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ABSTRACT 

A new N-body numerical integration procedure has been 
developed using the Virtual Mass concept. A fictitious Virtual 
Mass force center is defined in terms of its magnitude and rela- 
tive location so as to produce the same instantaneous gravita- 
tional acceleration of a body in space as is produced by the 
totality of the real celestial bodies acting upon it. This 
concept is a generalization of the gravispheric force center of 
the three-body problem to the case of an arbitrary number of 
gravitating bodies. The self-starting integration method is 
Encke-like in that, over each computing interval, a reference 
conic is computed relative to a constant magnitude Virtual Mass, 
However, the auxiliary acceleration equation is solved f o r  n o t  
just the reference-conic-to-true trajectory perturbation, but 
rather for this quantity plus the Virtual Mass'inert'ial rnGtib3, 
The method of solution is an iterative procedure for determining 
the coefficients of a Taylor's series expansion of the combined 
correction term so that the acceleration and jerk are satisfied 
at specified points on the computing interval. Coefficients 
through the fifth order can be determined by matching the aeeeler- 
ation and jerk at the computing interval end points only, Double 
precision digital computer comparisons have shown this fifth 
order expansion to be very efficient, yet highly accurate with 
large interval sizes. 

SEE REVERSE SIDE FOR DISTRIBUTION LIST 



DISTRIBUTION LIST (CONT. ) 

Marshall S~ace Fliaht Center (Cont.1 

Analytical Mechanics Associates 

J. B. Eades 
J. T. Findlay 
M. 6 .  Kelly 
S, Pines 
H. Wolf 

The Boeing Company 

J. Coons 
A. Deprit 

Martin-Marietta Corporation 

W, J. Pragluski 

McDonnePl-Douglas Astronautics Co. 

J. E, Lancaster 

MIT - Instrumentation Laboratorv 

R. H. Battin 
T. N. Edelbaum 
D ,  C. Fraser 

Purdue University 

D. W. Alspaugh 
H. Lo 
H ,  Pollard 

Smithsonian Astrophysical Observatory 

C-. A. Lundquist 
B. G. Marsden 



BELLCOMM,  I N C .  

D I S T R I B U T I O N  L I S T  (CONT.  ) 

T h e  U n i v e r s i t v  of T e x a s  a t  A u s t i n  

D. G. H u l l  
P. E. N a c o z y  
V. Szebehely  
B. D. Tapley 

U. S. N a v a l  O b s e r v a t o r y  

R. L. D u n c o m b e  
A. D. F ia la  
W. K l e p c z y n s k i  
P. K. S e i d e l m a n n  
T .  C. V a n  Flandern 

B e l l c o m m ,  I nc .  

6. M. A n d e r s o n  
R. A. B a s s  
H. B .  B o s c h  
A. P. B o y s e n ,  Jr. 
M. V. B u l l o c k  
J. 0. C a p p e l l a r i ,  Jr. 
K. M. C a r l s o n  
D. A. G o r e y  
D. A. D e  G r a a f  
A -  J. Ferrar i  
L .  P. G i e s e l e r  
E ,  M. G r e n n i n g  
D. R. H a g n e r  
W. 6. H e f f r o n  
N.  W.  H i n n e r s  
T. B. H o e k s t r a  
R. F. Jessup 
S. L. L e v i e ,  Jr. 
D.. P. Ling 
H.  S. London 
D. M a c c h i a  
K. E.  M a r t e r s t e c k  
W. I. M c L a u g h l i n  
J. Z .  M e n a r d  
G. T. O r r o k  
R. J. S t e r n  
C. C. H. T a n g  
J. W. T i m k o  
R. L. W a g n e r  
6. D. W o l s k e  
T. L. Y a n g  
D e p a r t m e n t  1 0 2 4  F i l e  



DISTRIBUTION L I S T  (CONT. 

COVER SHEET ONLY TO 

K. R. C a r p e n t e r  
J. P. D o w n s  
F. E l - B a z  
A. N.  K o n t a r a t o s  
M. L i w s h i t z  
J. L. M a r s h a l l ,  Jr. 
P. E. R e y n o l d s  
P. S. S c h a e n m a n  
F. N. S c h m i d t  
A. R. V e r n o n  
M. P.  Wilson 



TABLE OF CONTENTS 

Page 

ABSTRACT 

TABLE OF CONTENTS 

LIST OF FIGURES 

1.0 INTRODUCTION 

2.0 THE VIRTUAL MASS CONCEPT 

2-1 The Gravisphere 

2.2 The Gravispheric Force Center 

2.3 Generalization to More than Two Mass Points 

2.4 Virtual Mass Characteristics 

2.5 Criterion for Degeneration to Center of Mass 

3.0 CALCULATION OF NUMERICAL SOLUTIONS USING 
THE VIRTUAL MASS 

3.1 Mathematical Considerations 

3.2 Numerical Computation Procedure 

3.3 Numerical Experiments with the Fifth Order 
MAJ Procedure 

4.0 ASPHERICAL GRAVITATIONAL POTENTIALS 

4.1 Spherical Harmonics 

4.2 Discreet Mass Points 

5.0 SUMMARY AND CONCLUSIONS 

REFERENCES 

APPENDIX 



LIST OF FIGURES 

Geometry of Gravispheric Force Center 

Geometry of Gravispheres 

Virtual Mass' Geometry 

Example 221 Day Earth-to-Mars Trajectory, 
Showing Planetary and Virtual Mass Trajectories 

Virtual Mass Gravitational Parameter versus 
Time along Example Earth-to-Mars Trajectory 

Computation Flow Diagram for Simple Stepwise 
Integrator 

Restricted Three Body Earth-to-Moon Trajectory 

Dimensionless Jacobi Energy Variation along 
Example Earth-Moon Trajectory 

Computation Step Count versus Trajectory 
Time for Example Earth-Moon Trajectory 

Magnitude of Position Deviation at Fixed Final 
Time for Example Earth-Moon Trajectory 

Deviation of Final Position from JPL-Computed 
Value, for a 221 Day Earth-Mars Trajectory, 
as a Function of Number of Computation Steps 

Geometry of 3 Mass Point Oblate Body 



BELLCOMM, INC. 
955 L'ENFANT PLAZA NORTH, S.W. WASHINGTON, D. C. 20024 

SUBJECT: Virtual Mass Technique for 
Computing N-Body Solutions 

DATE: December 2 8 ,  ,1970 
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TM-70-2011-3 

TECHNICAL MEMORANDUM 

1.0 INTRODUCTION 

This memorandum is concerned with the problem of 
computing a spacecraft trajectory with high precision, given 
initial conditions of position and velocity at a specified 
time. Initially, the spacecraft is assumed to be acted upon 
only by inverse square gravitational forces of attraction 
exerted by n mathematical point masses representing n large 
celestial bodies such as the Sun, planets, and possibly their 
moons. The treatment will be modified later to include non- 
gravitational forces (e.g.! rocket thrust and solar radiation 
pressure) and the aspheric~ty of the potentials of the indi- 
vidual celestial bodies. 

The celestial bodies themselves are acted upon by 
their mutual gravitational attractions; hence, the complete 
set of differential equations of motion for the entire system 
of bodies (n gravitating bodies plus the spacecraft) is 

In these equations 

. th 
pi = mass of the 1- body times the Universal Gravitation 

Constant G 
- th 
r = inertial position of the i- body i 
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- 
rs = inertial position of the spacecraft 

Equations (1) and the appropriate initial conditions n~a-khemati- 
cally define the classical restricted N-body (N = n+l) problem, 
Clearly,all n large bodies influence the inertial motion cf 
the spacecraft in Eqn. (la), whereas none of these large bodies 
is influenced in Eqn. (Ib) by the spacecraft. Thus, the system 
of Eqns. (lb) is uncoupled from Eqn. (la) and can be solved 
separately once and for all to give the ephemeris of the system 

of celestial bodies in the form of time-histories of These 

data can be used in Eqn. (la) to solve for the remaining cn- 
- 

known, rs(t). subject to specified initial conditions. 

It is well known that the general solution to the 
system of Eqns. (1) for n = 1 is the conic section given by 
the intersection of the three-dimensional surface 

with the plane through the origin (rs = 0 )  orthogonal to g .  
The constant vectors e and define the orbital elements, and 
are given by the initial conditions: 

In writing Eqns. (2) and ( 3 ) ,  it has been tacitly assumed that 
the inertial origin is taken at the center of the solitary 



gravitating body. The development and use of the two-body 
solution in this three-dimensional vector form is treated in 
detail in Refer-ence 7. This computationally convenient form 
is used in the procedure described here. 

Just as well known as this two body solution is the 
fact that the general solution to Eqns. (1) has not been found 
for n > 1. Therefore, it is necessary to resort to numerical 
techniques to obtain solutions to Eqns. (1) or (la) for the 
many-body case. For the sake of clarity in presentation of 
subsequent concepts, two categories of numerical solutions 
will be considered: 

(1) Exact (analytical) solution of approximate differ- 
ential equations of motion over the computing 
interval. 

(2) Approximate solution of exact differential equations 
of motion over the computing interval. 

Since the only known general analytical solution is 
the two body conic solution given by Eqns. (2) and (31 , the 
first category involves reduction of Eqn. (la) to a single 
gravitating body. Historically, this has been accomplished 
quite simply by neglecting all but the single dominant term on 
the right-hand side. As long as the same term (hence the same 
celestial body) dominates the contributions of the others, 
there is no point in breaking up the solution into short ares, 
The exact solution should be propagated in one step over the 
entire range of applicability. Thus, the classical "patched 
conic" procedure represents the spacecraft trajectory as a 
series of conic arcs, spanning the corresponding spheres of 
influence and patched together at the boundaries such that the 
appropriately transformed trajectory states agree. As an 
illustrative example, a simple one-way interplanetary trajec- 
tory to Mars would be computed as three conic arcs: (1) a 
geocentric portion within the Earth's sphere of influence 
(SOI) , (2) a heliocentric arc from the Earths s SO1 to Mars ' 
SO1 and (3) a Mars-centered section within its SOI. Such 
trajectories can be computed quite rapidly. However, as might 
be expected from the oversimplification involved in the assump- 
tions, the accuracy is low. The answers are good enough for 
gross mission planning purposes, but not for detailed design 
and execution, 

The second category (approximate solutions to exact 
equations) provides a means for computing highly accurate 
trajectories. The fundamental principle rests upon assuming 
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some functional form for the solution over a small computation 
interval, The free parameters of the function are then adjusted 
so as to best satisfy (in some sense) the differential equation 
and the spacecraft state at the beginning of the interval. The 
details differ from one integration scheme to the next, As an 
example, the functional form could be assumed as a truncated 
power series in the independent time variable. The coefficients 
could then be solved for in order to satisfy the interval initial 
conditions and the differential equation at selected sub-interval 
time points. As far as astrodynamic applications are concerned, 
there are two further subclassifications of this second category 
into the Cowell and Encke methods. 

The Cowell method represents the entire solution with 
the approximating functional form, treating all terms on the 
right-hand side of Eqn. (la) as contributors of equal weight, 
Thus, it is necessary to carry a large number of significant 
digits in the computations so as not to lose the contributions 
of the small perturbations, taken together with the dominant 
term(s). In addition, it is necessary to compute with relatively 
small step sizes in order to keep the errors in the approximating 
function small. Clearly, one does not realize a smaller and 
smaller error as the step size is decreased, due to the preei- 
sion limitation inherent in finite digit truncation. The optimal 
interval size can be determined for each scheme by numerical 
experiments. 

The Encke method separates the complete solution into 
a reference trajectory and a perturbative correction. Let us 
denote the dominant celestial body by n = 1. Then write the 
inertial spacecraft position as 

Now introduce the reference trajectory with respect to the 
dominant body n = 1: 



- 
where rlr satisfies the two-body differential equation: 

with initial conditions at some epoch tE: 

Thus, the reference conic is said to "osculate" the true orbit 
at the epoch tE and, by Eqns. (5) and (7), we see that 

Substituting Eqn. (5) into Eqn. (4), differentiating twice and 
substituting from Eqns. (1) and (6) leads finally to the pertur- 
bation differential equation: 

This is the equation that is solved, subject to initial condi- 
tions ( 8 ) ,  by means of the approximating function. As written 
in Eqn. (9), there are obvious computational difficulties 
associated with small differences of nearly equal quantities, 
These difficulties can be circumvented by appropriate.algebraie 
manipulation of the right-hand side to obtain equivalent expres- 

sions in terms of the perturbation quantity q,. (See Ref. 1, 
for example). 



The advantage of the Encke procedure lies in the f a c t  
that, where the spacecraft motion is dominated by one celestial 
body, the perturbation is small, and hence the effect sf errors 
of the approximating function are minimized. Generally, the 
perturbation solution can be computed to fewer significant 
digits than must be carried in the Cowell method. When the 
perturbation grows too large, a "rectification" can be made to 
establish a new reference conic, starting at the new epoch, 
The rectification, of course, reduces the perturbation soluzion 
to the zero values (Eqn. (8) ) . 

The numerical procedure developed here is based on a 
new concept, the Virtual Mass technique, originally reported in 
Ref. 3. The concept of the gravispheric force center for thle 
restricted problem of three bodies was published in Ref, 2, 
but is not widely known. Although the gravisphere itself can- 
not be generalized to n > 2 bodies, it is shown in Ref, 3 that 
the equations for the force center and its associated mass 
magnitude can be generalized for such cases. At any instant, 
the unique fictitious body defined by this force center and 
mass magnitude produces precisely the same inertial acceleration 
of the spacecraft as that produced by the actual celestial bodies, 

The existence of this "Virtual Mass" immediately sug- 
gests the possibility of a simple implementation of a first 
category computational procedure -- an exact solution of an 
approximation to the equations of motion over each computing 
interval. Specifically, the spacecraft motion could be repre- 
sented as a conic arc over each computing interval, relative 
to an unaccelerated Virtual- Mass of constant magnitude, Several 
such schemes were programmed for the computer and studied in 
Ref. 3. The best mechanization yielded an accuracy of 2 parts 

in 7 x lo6 for the Jacobi energy for a restricted three-body 
circumlunar trajectory. 

This accuracy is adequate for the computation of design 
and operational lunar trajectories, since it exceeds the require- 
ments for estimation and control of such trajectories. The 
requirements for interplanetary trajectories, on the other hand, 
are orders of magnitude greater due to their far greater sensi- 
tivities. Accordingly, the specific purpose of this memorandum 
is to document a new Virtual Mass computational procedure of 
the second category. The spacecraft motion is separated into a 
reference trajectory and a perturbative correction 5 la Encke, 



The reference trajectory is an osculating conic section relative 
to the Virtual Mass. However, since the Virtual Mass motion is 
not known a priori, as is the physically real reference body in 
the usual Encke procedure, the perturbative correction and the 
Virtual Mass motion are lumped together and expanded in a single 
Taylor's series. The evaluation of the coefficients of this 
series includes the effects of the Virtual Mass magnitude change 
as well as the position change. It will be seen that this more 
sophisticated procedure is still quite concise and hence fas-t. 

For the sake of completeness, and since Ref. 3 saw 
only limited distribution, the derivation of the basic Virtual 
Mass equations is included, together with the equations for the 
new computational procedure. 

2.0 THE VIRTUAL MASS CONCEPT 

As stated in the Introduction, the main interest in 
this memorandum is the motion of a spacecraft in the restricted 
N-body problem. However, it should be borne in mind that the 
concept of the Virtual Mass is in no way dependent upon the 
fact that the spacecraft mass is infinitesimal compared with 
that of the celestial bodies. Each celestial body also has an 
associated Virtual Mass which can be used, in an obvious exten- 
sion of the procedure to be described for the spacecraft alone, 
to solve the general N-body problem. 

The Virtual Mass principle (for a spacecraft) is based 
upon the idea of replacing the combined gravitational effects of 
many celestial bodies on the spacecraft by the attraction of a 
single equivalent body.* The line of action of the resultant 
gravitational force vector defines the locus of possible force 
center locations (the mass magnitude is uniquely related to the 
location). The force center location, called the 'varicenter' 
chosen in Ref. 4 not only gave the correct force but also matched 
the instantaneous gradient of that force. However, in order to 
use this force center in a practical integration scheme, it was 
necessary to take into account the dynamics of the varicenter 
notion. The significance of this will become more apparent in 
the subsequent presentation of different methods of utilizing 
the Virtual Mass. 

*This is not a new idea. For example, an attempt was lrrkade 
in Ref. 4 to make an instantaneous reduction of the restricted 
N-body problem for implementation as an integration method, 
while Ref. 5 describes a procedure for replacing the Earth and 
Moon by a single body to permit accurate navigation and guidance 
on lunar missions using the two-body equations. 



As noted earlier, the Virtual Mass location and 
magnitude are derived as the n-body generalization of the 
gravispheric force center. Because of the relative obscurity 
of the concept of the gravispheric force center, the develop-- 
ment will begin with a presentation of this material. More 
importantly, this affords an opportunity to express the results 
in particular algebraic forms which reduce to a triviality the 
subsequent generalization to more than two gravitating bodies, 

2.1 The Gravisphere 

Consider the simple system consisting of two Large 
magnitude point masses pl and p2 and a spacecraft S. As 

mentioned earlier, the mass of the third body need not be 
infinitesimal compared with p1 and p 2" The symbol p, used 

here to designate the mass points, quantitatively represents 
the mass times the Universal Gravitation Constant. The posi- 

- 
tion vectors of the three bodies are denoted by rl, r2, and - 
r in an arbitrary inertial reference frame (Fig. 1). The 
S 

relative positions are 

We will now determine the nature of the surface 
defining the locus of all possible spacecraft positions having 
the constant ratio 

where, of course, 





It i s  a n t i c i p a t e d  t h a t  t h i s  su r face  must be r o t a t i o n a l l y  sym-  

met r ic  about t h e  l i n e  Z12. Clear ly ,  then ,  it w i l l  be more 

convenient t o  express t h e  spacec ra f t  p o s i t i o n  i n  terms of a 
coordinate  system centered on t h i s  a x i s .  Let C be a  scalar 

f a c t o r  t o  be appl ied t o  T12, de f in ing  t h e  f r a c t i o n a l  displace- 

ment of t h i s  new coordinate  frame o r i g i n  from mass po in t  pl 

toward p 2  ( see  Fig. 1). The value of C w i l l  be l e f t  a r b i t r a r y  

f o r  t h e  moment, but  w i l l  be evaluated l a t e r  t o  a f f o r d  t h e  
g r e a t e s t  convenience i n  i n t e r p r e t i n g  t h e  a n a l y t i c a l  form for 
t h e  sur face .  Now w r i t e  

and s u b s t i t u t e  t h i s  i n t o  Eqn. ( 1 0 )  t o  ob ta in  

The magnitudes of t h e s e  vec to r s  a r e  



Squaring Eqn. (11) and substituting from Eqns. (13) yields 

Collecting like terms and dividing through by l-p2: 

The most convenient choice for C is clearly 

since this causes the second term in Eqn. (14) to vanish, Sub- 
stituting Eqn. (15) into Eqn. (14) shows finally that the surface 

is a sphere with center at cTl2 relative to pl and with radius 

Since the ratio of the distances from the two large masses is 
constant on this sphere, and since the gravitational attraction 
depends inversely upon distance squared, the ratio of the two 
gravitational attractions is also constant -- hence the name 
gravisphere. The geometry of the family of gravispheres is 
shown in Fig. 2 for several different values of p. Observe 
that when the spacecraft position corresponds with pl, then 

r = 0, p = 0, the geometric center of the gravisphere is also Is 
at the point and by Eqn. (16) the radius rcs = 0. As the 

spacecraft moves away from pl, the geometric center also moves 

away in a negative direction (away from p2) along q2. When 





the spacecraft is equidistant from both bodies, P = 1, the 
gravisphere radius is infinite, and the geometric center is - 
at * along r12. In this case, of course, the gravisphere 

is actually the plane equally dividing all space between the 
two masses. Finally, as the spacecraft moves toward u2." P 
increases from 1 to + -, and the gravisphere collapses on u2 
as the geometric center moves from + (away from vl) to v 2  

- 
on r12. Note that, since this geometry is completely independent 

of the mass values vl and v2, there is not only rotational sym- 
metry about r12 but also a mirror symmetry with respect to the 
halfway plane p = 1. The influence of the mass magnitudes will 
be considered in the next section. 

2.2 The Gravis~heric Force Center 

To facilitate the identification of arbitrary poinzs  
on the surface of a gravisphere, let us introduce an arbitrar- 

ily oriented unit vector n. Using this vector, together with 
the radius magnitude given by Eqn. (16), the vector from the 
geometric center of a gravisphere (defined by a value of p )  to 
any spacecraft position on that gravisphere can be written as 

The absolute value symbol is omitted from the factor involving 

p ,  since the sign is assumed to be absorbed in ?i itself. For 
the sake of algebraic convenience, let us also introduce 
- 
u, a unit vector in the direction of q2. Therefore, one may 
write 



Now, substitute Eqns. (15), (17) and (18) into Eqn. ( 1 2 )  to 
obtain 

According to the inverse square law of gravitational 
attraction, the acceleration of the spacecraft is written as 

From Eqn. (11) 

Hence, the resultant acceleration can be written in the form 

Substituting Eqn. (19) into this expression and collecting like 
terms gives 

Recognizing that TiR always intersects q2, let us 
solve for v, the point of intersection. In a procedure s i m i l . a r  



to that used in finding the center of the gravisphere, write 
the intercept point in the form of a displacement along - 
r12 from vl: 

where V is the fraction to be determined. The vector from v 
to the spacecraft is 

Substituting from Eqns. (18) and (19) gives 

The condition that the relative position vector defined by E q n ,  ( 2 2  
be anti-parallel to the acceleration given by Eqn. (20) is 

Since there must always be an intercept point and since ri2 and 
- 
u x in general are not zero, the only alternative is that the 
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expression in the brackets must be zero. Solving this expres- 
sion for V gives 

Substituting into Eqn. (21) 

and transforming to the inertial base frame 

Finally, substituting. from Eqn. (11) for p yields 

- 
Note that, since V and hence rlv and rv do not depend 

- 
upon n, the intercept point on the vector r12 is the same for 
all spacecraft positions on any given gravisphere p = constant, 
Thus, we call this unique fixed point the "gravispheric force 
center". The mass which would have to be concentrated at v 
to produce the same gravitational acceleration as v1 and p 2  

together is obtained from the equation 



Making use of Eqn. ( 241 ,  the right side can be expressed in the 
form 

Hence, pv must be 

Unlike the force center location, the mass magnitude given by 
Eqn. ( 2 5 )  is not fixed for all points on a gravisphere, There 

is rotational symmetry about the r12 axis, but the magnitude 
depends upon the displacement from v. 

It is of interest to examine the gravispheric force 
center behavior corresponding to the purely geometric character- 
istics explored earlier. When p = 0 and rls = 0, Eqn. (24) 

- 
shows that fv = rl. This, of course, means that rvs = r and Ps 

- Eqn. ( 2 5 )  gives pv - Similar behavior is noted when p -> 

or r + 0: the gravispheric force center goes to r2 and the 2 s  
magnitude approaches v2. At the halfway plane D = 1, rls = r 2s 
and Eqn. ( 2 4 )  reduces to the standard definition for the center 
of mass. Note, however, that Eqn. ( 2 5 )  does not concentrate 
the total of and v 2  at v in this case. 

2.3 Generalization to More than Two Mass Points 

There is no way to extend the preceding concepts to 
more than two gravitating bodies if one is constrained to the 



idea of a gravisphere-like surface of constant distance ratios, 
There just are no such surfaces or space curves except for very 
special configurations of mass points. However, the simpler 
geometry of the gravispheric force center, on the line between 
a pair of mass points, is easily extendable. Consider the mass 
configuration in Fig. 3. First select any two mass points, say 
v1 and ". These two can be thought of as being replaced by 

the gravispheric force center vv appropriate to the spacecraft 
12 

position relative to them. Next take this fictitious mass 1 . 1 ~  

la: 
and another of the real gravitating bodies (v3, say) and replace 

them by their gravispheric force center vv Continue this 
123 

process, each time taking another one of the unaccounted for real 
bodies, until they have all been replaced by a single fictitious 
mass v,. 

This geometric description can be expressed analytically 
by straightforward application of Eqns. (24) and (25). The 
first step yields 

where the subscripts 12 indicate that these values account for 
masses v1 and v2. Again apply the basic formulas, treating 

u as vlr rv,, as rl, and u 3  as v2, r3 as r2: v,, 



FIGURE 3 -VIRTUAL MASS GEOMETRY 



With repeated application of the procedure, one obtains for n 
attractive bodies: 

where 



and the definitions of the other terms are the same as given 
for Eqns. (1). Equations (26) represent the generalization 
of the gravispheric force center for two masses to the ease 
of n bodies. Since the concept of the gravisphere itself is 
inappropriate for the larger number of mass points, this 
generalized effective force center is called the "Virtual Mass", 
Equations (26) can be differentiated to give the mass rate ar1.6 
velocity of the Virtual Mass as functions of the positions and 
velocities of the spacecraft and the gravitating bodies: 

where 

The uniqueness of the Virtual Mass is evident from 
Eqns. (26). Any arbitrary ordering of the terms in those equa- 
tions, corresponding to random sequencing of the mass points 
of the system, preserves the same values. In the same vein, 
it is obvious that Virtual Mass replacement of completely arbi- 
trary subgroupings of the n points is permissible. Consider a 
subgroup of mass points numbered 1 through j ,  where -j < n, 
Equations (26) can be written 



where t h e  subsc r ip t s  n, j ,  and n- j ,  r e spec t ive ly ,  denote m a s s  
po in t  groupings of a l l  n bodies ,  t h e  1 through j subgroup, and 
t h e  j + 1 through n remaining subgroup. Inversion of Eqns, (26) 

t o  so lve  f o r  3 and S shows t h a t  

S u b s t i t u t i n g  t h e s e  i n t o  Eqn. (28 )  f o r  t h e  1 through - j subgroup 

t e r m s  and w r i t i n g  out  t h e  o r i g i n a l  d e f i n i t i o n s  of M n m j  ,and 

Sn-j g ives  

Equations (30 )  c l e a r l y  show t h a t  a subgroup can be replaced by 
i t s  V i r t u a l  Mass r e l a t i v e  t o  t h e  spacec ra f t ,  and t h a t  this 
f i c t i t i o u s  po in t  can be t r e a t e d  i n  t h e  same manner a s  the 
remaining r e a l  bodies t o  compute t h e  complete system V i r t u a l  
Mass. This important property w i l l  be found q u i t e  use fu l  
l a t e r .  

The equivalence of t h e  spacec ra f t  acce le ra t ion  due t o  
t h e  f i c t i t i o u s  mass loca ted  a t  t h e  gravispher ic  fo rce  center 



with the acceleration due to the two real mass points was 
evident in the derivations in Section 2.2. A similar equiva- 
lence of the acceleration due to the Virtual Mass with that 
due to all n real bodies could be argued on the basis of an 
appropriate superposition principle. However, this is neither 
necessary nor desirable, since a simple direct proof is pss- 
sible. The spacecraft equation of motion, Eqn. (la), can be 
written 

Substituting the definitions used in Eqns. (26): 

and finally introducing the Virtual Mass quantities for S and 
from Eqns. (29) gives 

The Virtual Mass indeed produces the correct acceleration, and 
Eqn. (31) is the spacecraft equation of motion in terms of this 
quantity. Methods of solving this equation will be discussed 
in the next chapter. First, however, some characteristics sf 
the Virtual Mass will be described. 

2.4 Virtual Mass Characteristics 

Equations (26) reveal that the Virtual Mass is a 
variation of the conventional definition of the center of mass 
of a system of particles. In the position relationship the 
difference from the usual center of mass lies in the mul- t ip l i -  
cation of the individual masses by a spacecraft proximity 

weighting factor ris - 3 .  The mass magnitude differs from the 



total mass by the application of a weighting factor 

to each term in the summation. As the spacecraft and celestial 
bodies move, these differences vary the position and magnitude 
of the fictitious mass in such a way as to produce the correct 
instantaneous resultant acceleration of the spacecraft, 

In the previous discussion of the gravispheric force 
center it was seen that, for the restricted three body problem, 
the Virtual Mass position coincides with the center of mass 
(barycenter) whenever the spacecraft lies on the halfway plane, 
In particular, for the special case where the spacecraft is in a 
triangular libration point orbit, the vehicle stays on this 
plane ( p  = l), and hence the Virtual Mass remains fixed at the 
center of mass and fixed in magnitude. This is true even in the 
case of elliptic three body motion. Although the scale changes 
as a function of time, it does so in such a manner as to pre- 
serve the relative geometric similarity. Equations ( 2 6 )  show 
that as long as the distance ratios remain the same, the Virtual 
Mass stays constant. 

The most general type of trajectory of interest, how- 
ever, carries the vehicle successively near different celestial 
bodies. Whenever the spacecraft is near a particular body 

th (e. g. , the k- one) , Eqns. (26) show that that body's scontsi:bu- 
tion to the Virtual Mass position and magnitude is heavily 

-' 
3 weighted due to division by the relatively small rks . In such 

a situation, the Virtual Mass is near the dominant celestial 

body (rv a: ) and essentially matches it in mass (pv 2 pk). k 
Slight differences occur due to the perturbing influences of 
the other bodies. As the trajectory carries the spacecraft far 

th away from the k- body and under the dominant influence of 
another (call it Q), the Virtual Mass moves continuously to the 
vicinity of the new body and changes to nearly its mass: 

Thus, every spacecraft trajectory in an n-body gravity field 
has associated with it a phantom trajectory of the related 
Virtual Mass. 



An example of an Earth-to-Mars trajectory is shown 
in Fig. 4. The motions of the celestial bodies were given by 
JPL Development Ephemeris No. 19 (Ref. 6). The curves are the 
projections of the three-dimensional trajectories upon a plane 
passing through the solar system center of mass and parallel 
to the mean equator of 1950.0. Time ticks are shown along each 
of the trajectories (spacecraft, Virtual Mass, Earth, and Mars) 
at approximately equal position displacements. The very small 
time increments between neighboring tick marks on the Virtual 
Mass trajectory qualitatively indicate the high inertial veloci- 
ties achieved in the transition regions (e.g., 0.32 Astronomis:al 
Units/day at t = 218 days). To the scale of the plot, the 
Virtual Mass appears to coincide with the neighboring planetary 
mass whenever the spacecraft flies by in the near vicinity. 
Figure 5 shows the corresponding variation of the Virtual Mass 
magnitude with time. Again, the very rapid changes in the 
transition regions and the essential equivalence with the cur.- 
rently dominant celestial body are obvious. 

2 , 5 'Cff 'te'fi'oh' f o'r ~'e'cfe'n'e'r'a't'i'o'n' 'to 'C'e'nYeir of Ma's s 

This chapter is concluded with a discussion of the 
nature of the Virtual Mass when the spacecraft is separated 
from a group of gravitating mass points by a distance which is 
large compared with the diameter of the system of masses. By 
inspection of Eqns. (26) it is seen that, as the ratios of the 
r 's to one another and to rvs approach unity, the Virtual is 
Mass equations reduce, in the limit, to the standard forms f o r  
the total mass concentrated at the center of mass. It is not 
anticipated that there will be much interest in spacecraft 
trajectories which carry to such great distances compared with 
the size of the solar system as a-whole. However, as noted in 
Section 2.3, a Virtual Mass may be computed for a subgroup of 
masses and later combined with other subgroup Virtual Masses 
or with other real bodies. For example, as the spacecraft 
recedes from Earth on an interplanetary mission, it would be 
convenient to combine the ~arth and ~ o o n  as a single mass at 
their barycenter after the spacecraft is sufficiently far away, 
Another even more important application will be described in 
Chapter 4. The crux of the problem then is: I 

how far is far enough for a prescribed precision of calculation? 

Since it has been shown that arbitrary subgroupings 
are permissible in the calculation of the Virtual Mass, a cri- 
terion will be derived for essential correspondence of the 
Virtual Mass with the center of mass for the case of two gravi- 
tating bodies. The application of this criterion when there 
aie more mass points will be discussed in Chapter 4, 
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The center of mass and the Virtual Mass (gravispharic 
force center) are known to lie on the line connecting the t w o  
mass points. We will simply write an expression for the dis- 
placement between them in terms of the parameters describing 
the spacecraft relative geometry. The vector from the center 
of mass to the Virtual Mass can be written in terms of khe 
difference of the vectors relative to mass ul: 

where obviously 

Substituting Eqns. (23) and (33) into Eqn. (32) gives 

We now proceed to express p in a form convenient for our purpose, 
- 

First write flS and r2s in terms of the spacecraft position !Fcs 
relative to the center of mass: 

and then compute 



Factoring out rcs and writing 

one obtains 

where 9is the angle between rcs and %2.  Since we are inter-. 

ested in the case where the spacecraft displacement is large 
compared with the distance between the two mass points, E is 
a small parameter and terms higher than first order in E will 
be neglected. This approximation in Eqn. (36) results in 
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Again, assuming the second term is small compared with unity: 

to first order in E. Since the real interest is in the cube, 
not the square of p :  

Finally, substituting Eqn. ( 3 7 )  into Eqn. ( 3 4 )  and simp1ifyi:ng 
gives 

The vector magnitude is the only quantity of interest; thus 

The maximum displacement of the Virtual Mass from the mass 
center occurs when lcose 1 = 1. Thus, cose is set equal to I 
for a worst case analysis. Substituting for E from Eqn, (35) 
and dividing through the equation by rcs: 



Treating the ratio on the left as a prescribed which 
is desired, this equation can be solved for the spacecraft 
distance beyond which the two mass points can be coalesced at 
the center of mass: 

3.0 CALCULATION OF NUMERICAL SOLUTIONS USING THE V1RTUA.L .MASS 

3.1 Mathematical Considerations 

It was shown in Eqn. (31) of the preceding chapter 
that the Virtual Mass replaces the combined gravitational effects 
of all the celestial bodies acting upon the spacecraft. This 
equation, repeated here, 

looks deceptively simple. Although it does reduce the problem 
to a two-body case, there is no general solution for it. The 
most obvious difficulty occurs because of the non-constancy sf 

I-Iv the Virtual Mass magnitude. In addition, the acceleration 

of the spacecraft on the left is with respect to a Newtonian 
inertial frame, whereas the spacecraft position vector on the 
right is measured relative to the accelerating Virtual Mass, 
Writing 

- - 
r s = r  + F v  1 

VS 



where the single subscript v denotes measurement of the k 7 i r t u a l  
Mass quantity with respect to the inertial frame, Eqn. (39) 
becomes 

As noted, no general integral exists; hence, one must 
resort to numerical procedures in order to obtain approximate 
solutions. The simplest approach, defined conceptually in the 
Introduction, involves exact solutions of approximations to the 
equation of motion, Eqn. (41). Three such techniques are reported 
in Ref. 3. 

The least sophisticated can be characterized as a 
simple Euler procedure. Here the Virtual Mass magnitude and 
inertial position are held constant at the values corresponding 
to the beginning of the computing interval. Thus 

.. - .. - - - - rv - 0, rvS - rS and pv = p = constant 
vo 

and Eqns. (39) or (41) reduce to the classical two body case 
for which the conic section solution applies. The initial 
conditions of position and velocity are 

- 
since rv- is taken as zero. Even with very small computing 

- u 
intervals, this procedure diverges quite rapidly from the true 
solution. 

An obvious improvement in this simple Euler.method 
would be afforded by considering a better representation of 
the motion of the Virtual Mass. In this case the magnitude 
would again be held constant at the initial value, 
pv = p = constant. However, the position would be all-owed 

v- 



to change from the initial value at the constant velocity 
0 .. - - -- 

B r . Clearly it would still be true that i?, = 0 and rVS = - - 
vo 

s " 

hence, the classical two body solution would again be valid for 
- 

the relative motion. The initial conditions would be qiS rVS 
8 0 

and the final spacecraft inertial state would be obtained from 

where 6t is the computation time interval. This method shows 
marked improvement over the first, but still diverges faster 
than desired from the correct solution. 

The best method in this category is a modified E u l e r  
technique considering relative motion. Here the assumptions 
regarding the Virtual Mass time history are precisely the same 
as for the immediately preceding case. The difference is 
that an average mass value and an average velocity are held 
over the interval. The values used are 

and obviously necessitate an iterative computation procedure 
to determine compatible sets of values of average and final 
values. 

Despite the fact the conic section solution i1:self 
has to be included in the iteration cycle (because of the 
changing mass and initial velocity), this method significantly 



outperforms the other two in terms of speed and accuracy, The 
details are reported in Ref. 3. The best accuracy achievable, 
however, is limited to holding the restricted three-body Jacobi 

energy to a variation of 2 parts out of 7 x lo6 for a typical 
free-return Earth-to-Moon transfer trajectory. This accuracy 
is adequate for the calculation of lunar trajectories, but not 
for precision interplanetary work. In addition, this general 
approach to obtaining solutions has difficulty in handling nsn- 
gravitational accelerations such as rocket thrust, solar radia- 
tion pressure, aerodynamic forces, etc. Consequently, we turn 
in this memorandum to the category of solution methods comprising 
the approximate solutions of the exact equations of motion, 

First, for the sake of complete generality, add the 

term a to Eqns. (39) and (41) to include any and all aceelera- 
tions other than point mass gravitational terms: 

Following the Encke approach, let us introduce a 
reference conic solution which can be computed exactly. The 
difference between this and the complete solution is the per- 
turbation solution and this is the part to be calculated by an 
approximate procedure. As in the classical Encke method, it 
is assumed that the reference trajectory is a conic section 
two-body solution. However, the Virtual Mass is selected as 
the reference body, rather than one of the real celestial bodies, 
Thus, the solution to Eqn. (43) is represented as 

where zvr is the reference conic relative to the Virtual Mass 
and rrs is the perturbation from the reference conic to the 



true spacecraft trajectory. The differential equation-defining 
the two-body reference conic is 

where vv is held constant at the Virtual Mass magnitude at the 
0 

beginning of the computing interval. The initial conditions 

are chosen so the conic section osculates the true solution at 
the beginning of the interval. The differential equation which 

must be satisfied by the perturbation term rrs is obtained by 
twice differentiating Eqn. (44) and substituting for Fvr from .. - 
Eqn. (45) and for rvs from Eqn. (43) 

In view of Eqns. (46) and the definition in Eqn. (44) and its 
first derivative, we see that the initial conditions for this 
differential equation are 



Equation (47) shows clearly that the perturbation term a.ceounts 
for the accelerated motion of the Virtual Mass, the variability 
of its magnitude, and the non-point-mass accelerations a. 

Although Eqn. (47) looks quite similar to the pertur- 
bation equation associated with the classical Encke procedure, 
the use of the variable Virtual Mass renders the usual solution 
methods ineffective. It is true that Eqn. (27a) can be differ- .. 
entiated to obtain an explicit expression for Fv. However, 

this is undesirable from two standpoints: 

(1) The algebra is complicated; hence,it offers no real 
help in trying to solve Eqn. (47). 

(2) The expression explicitly involves rs and Ti. These 
can be eliminated by substituting from Eqns. (11, 
but the algebra becomes even worse and the complete 
system of differential equations is reintroduced, 

One obvious way around the difficulty is to ex:pand 
- 
r and rv in a Taylor's series rs 

if the coefficients can be evaluated conveniently. Assuming that 
an iterative computation procedure will be employed, we may con- 
sider that the Virtual Mass position and velocity are given by 
Eqns. (26) and (27) at the beginning and end of the interval 6-k 
(the end values are the ones to be iteratively improved), Thus, 
Eqn. (49b) and its derivative, 



both truncated at the third order terms, can be considered as .. ... - 
a system of two equations in the unknowns Fv , r . Explicit 

0 vo 
solution for these quantities gives 

- - 451) 
... 12(rv - rV) + 6(rv + <) (St) 
- - 0 0 

rv - 
0 (st) 

This constant jerk (third derivative) representation of the 
Virtual Mass is the simplest which still satisfies the exact 
positions and velocities at the beginning and end of the esm- 
puting interval. 

The evaluation of the coefficients of the expansion 

in Eqn. (49a) for the perturbation term rrs depends on the coef- 
ficients just determined in Eqns. (51) andon the definition in 
Eqn. (47). First, note that the two leading coefficients of 
Eqn. (49a) vanish by Eqn. (48). The remaining coefficients 

involve second and higher order derivatives of c s ,  evaluateci 

at the start of the interval. These can be determined by 
Eqn. (47) and higher order derivatives of it, evaluated at the 
beginning point. For the sake of notational simplification set 

Then Eqn. (47) and its derivatives can be written 

etc. 



where, in addition to Eqn, (52), we have 

etc. 



In writing Eqn. (54b) in the form shown, use was made .. . e - 
of Eqns. (43) and (45) to eliminate the derivatives qs and rv,. 
Note that the substitution of Eqn. (43) introduced the non- 

gravitational term a into this derivative of F. It is assumed 

that a and its derivatives are known functions. Evaluation sf 
Eqns. (52), (53), and (54) at the beginning of the computation 
interval gives 



and 

... 
The derivatives rv and < are given by Eqns. (51). Note that the .... - 0 0 

rv term in Eqn. (56c) was eliminated since it is zero in this 
0 

constant jerk representation of the Virtual Mass motion, The 

derivative bT7 would have to be determined from a TayloxUs 
"0 

series expansion for pv similar to Eqn. (49b)  for rv. A scalar 

solution exactly analogous to Eqns. (51) results for ivo and "vo. 

This solution procedure was tested for the case of a 

fifth order expansion in the correction term zrs. As might Joe 

expected from Eqns. (54) , (55) and (56) , extension to fifth order 
involves considerably more complicated algebra, but iS otherwise 
straightforward. The results showed an improved performance 
over the best method of Ref, 3 -- the modified Euler procedure, 
considering piecewise uniform motion of the Virtual Mass, 



However, the constant jerk restriction of the Virtual Mass repre- 
sentation apparently limits the accuracy improvement to only a 

0 

couple of orders of magnitude, or about 1 part in lo0 in the 
constancy of the Jacobi energy on the test lunar trajectory* 
Even this accuracy was bought at high expense in terms of run- 
ning time, since small computing intervals were required, 
Although a detailed investigation was not conducted, it appears 
that the chief source of the difficulty lies in the Virtual 
Mass representation. Indeed, one is hard-pressed to justify a 
fifth order representation of a perturbative correction pahen 
the gross motion of the Virtual Mass is limited to a third 
order expansion. 

Fortunately, the problem is quite easily circumvented, 
making possible a simple yet highly accurate procedure, The 
trick lies in treating Eqn. (47) not as the differential equa- 

tion for the perturbation rrs alone, but rather for the 
combination 

The realization that this combination should be made comes when 
one substitutes Eqn. (57) and its derivative into Eqn. (44)and 
its derivative, and uses that result in Eqns. (40a, b):' 

Clearly,all one needs is the reference conic and Fc. Rewriting 
Eqn. (47) in terms of the definitions in Eqns. (52) and (573 
gives for the second order differential equation (for the 
acceleration) and its next higher derivative (for the jerk): 



We are not interested in higher order derivatives since, by 

" and higher derivatives which Eqns. (541,  these involve fv, pv 

are evaluated only with great difficulty. 

Expanding the combined correction solution in a. 
Taylor' s series yields 

The reason for truncating at the fifth order terms will become 
apparent. Evaluating Eqn. (57) and its derivative at the begin-" 
ning of the interval and taking into account Eqn. (48) shows 
that 

These are known by the Virtual Mass definitions in Eqns, (261 
and (27). Evaluating Eqn. ( 5 9 )  at the start of the interval and 
substituting from Eqn. ( 5 5 ) ,  we see that 



This is as far as the coefficient determination can be 
carried considering conditions only at the start of the con- 
puting interval and limiting ourselves to no knowledge of the 
Virtual Mass derivatives beyond the first. However, additis:~~aE 
coefficient determinations can be made if we consider conditions 
at points other than the beginning of the interval. Specifi- 
cally, assume that the quantities in Eqns. (59) are evaluated 
at the end of the computing interval." The relations in 
Eqns. (60c, d) are inferred to be evaluated at the end of the 
interval since 6t denotes the total time increment. Equating .. ... - 
these two expressions for Fc, rc and substituting from Eqns. (62) - 
for rc , rc , gives the following two equations in the unkno~dns 

0 0 

*This of course implies an iteration procedure, since - - 
K and depend upon rv, rv, pV and bv at the end of the interval, 
and these have yet to be determined. 



Solving t h e s e  e x p l i c i t l y  f o r  t h e  unknowns r e s u l t s  i n  

-h 

F i n a l l y ,  s u b s t i t u t i n g  Eqns. ( 5 2 ) ,  (54) and (55) i n t o  Eqn, ( 6 . 3 )  ; 
t hen  Eqns. ( 6 1 ) ,  (62) and ( 6 3 )  i n t o  Eqns. (60 a ,  b ) ;  and then t h i s  
r e s u l t  i n t o  Eqns. (58) l e a d s  t o  t h e  i t e r a t i o n  equa t ions  for the 
f i n a l  s p a c e c r a f t  s t a t e :  

where t h e  d e f i n i t i o n s  of t h e  t e r m s  on t h e  r i g h t  are 



pv pv 
2 

- -  (St) " A 
3 

r 
r l2 r 

3 vs 
rvS VS VS 

The subscript o in the above definitions is in-tended to 
suggest that the groups of terms so designated depend only  upon 
the conditions at the beginning of the interval. This i n c l u d e s  
terms involving the reference conic terminal conditions, since 
this relative trajectory is completely predetermined by the 

starting values. Thus, the and terms are computed once - - 

only for the interval, whereas the X and X terms are iteratively 
improved until there is no sensible change. 

The non-point-mass terms involving go and so properly 
belong in the definitions of % and zQ. If this acceleiration con- 

tribution were dependent solely upon time (as, for example, a 

rocket thrust in a vacuum), then the a and a vectors evaluated at 
the end of the interval also could be included in To aGd xo. In 

general, however, such effects will be state-dependent (e*cg,, 
solar radiation pressure or aerodynamic forces) and hence m c s t  
be iterated. Therefore, these contributions have been written 

in the X and groupings. This will result in only a slight inef- 
ficiency in unnecessarily iterating the exceptional cases of 
state independence. Appendix A treats methods for handling 

terms dependent upon a for different cases. 
The final set of Eqns. (64) and (65) for propagating 

the spacecraft state are very simple. As derived they guarantee 
that the correction, given by Eqn. (47), and its next higher 



derivative will be satisfied at the beqinninq and the end of 
the computing interval. This, of course, means that the original. 
differential equation of motion, Eqn. (42) or ( 4 3 ) ,  for space- 
craft accelerati-on and its derivative for spacecraft jerk will 
also be satisfied at the two ends of the interval. The algebraic 
equations for the Virtual Mass state, Eqns. (26) and (270 , w F l 1  
be similarly satisfied. For the sake of brevity in future 
references, this procedure will be called MAJ for matched aecel-- 
eration and jerk. 

Note that, although the combined correction solution 
- 
r was expanded in a Taylor's series in the time increment 6t 
C 
to terms of degree five for position and four for velocity, the 
final solution for the spacecraft state is of degree three for 
position and two for velocity. This occurs because the inversion .... ....a 

of Eqns. (60c, d) to solve for rc and r results in solutions, in 
0 Co 

-2 Eqns. (63) , involving (6t) and ( 6t) -3 .  Thus, multipliers 
involving 6t to higher powers are reduced, leaving no terms in 
6t beyond the third power. Most important from the standpoint 
of the practicalities of numerical computation is the f a c t  that 
there are no negative powers of St in the final forms, 

The MAJ procedure can be extended to obtain h ighe r  
order solutions. The system of two equations for the two unknown 
fourth and fifth order initial value coefficients was obtained 
by evaluating Eqns. (59) and (60c, d) at the end point of the 
interval St, equating and solving. If the initial series ex- 
pansion had been carried out to the seventh order term, these 
two equations (now in the four unknowns of the fourth througl~ 
the seventh order coefficients) could be augmented by two more 
obtained by evaluating Eqns. (59) and (60c, d) at the midpoint 

(y) and equating. This would give the requisite number of 

four equations and would guarantee the satisfaction of all 
equations (acceleration and jerk) at the interval midpoint as 
well as the endpoints. The procedure can be extended in prin- 
ciple to any order desired by choosing a sufficient number of 
intermediate points in the computing interval. However, the 
algebra does get more complicated with the necessity for 
solving larger and larger systems of simultaneous equations for 
the higher order coefficients. 

The MAJ procedure has been programmed only for the 
fifth order solution given explicitly by Eqns. (64) and (651, 
Detailed numerical results will be presented later. It w i l l  



simply be remarked here that this is far more accurate and faster 
than any of the earlier methods and the fifth order representa- 
tion appears to be sufficient for anticipated requirements, 

3 . 2  Numerical Com~utation Procedure 

Some considerations of the numerical computation pro- 
cedure for the fifth order M A J  technique are presented here, It 
is not the intent to document the digital computer programming 
details (this is done in Ref. 13), but rather to facilitate a 
better understanding of the method by discussing the more impor- 
tant numerical analysis aspects. 

The iterative computation procedure is best described 
by means of the flow diagram shown in Figure 6. It is activated. 
by a "CALL" from, and effects a "RETURN" to, a MAIN program which, 
among other things, monitors the progress along the trajectory for 
satisfaction of certain user-prescribed "events". If an event is 
not imminent,a flag named L@@P is set by the MAIN program to tell 
the stepwise integrator to proceed with a normal step; otherwise, 
the flag is set to cause a recomputation of the last step so as 
to end the cycle exactly at the desired event. The first action 
taken in Block 1, therefore, is to test the flag setting and 
determine whether this is to be a new step or a recalculation 
of the last step. If it is to be a new step, certain quantities 
computed at the end of the preceeding interval are indexed in 
Block 2  to serve as the initial values for the new stepn Among 

- 
these quantities are the relative state values FvS, rvs and u 

V 
- 

which become the reference conic initial values Fvr , ror and 
0 0 

I-Iv " 
These quantities are then used in Block 3  to compute the 

0 

reference conic orbital elements. Equations ( 3 )  are used with 
the appropriate substitutions on the right-hand sides, 

The next order of business is to establish the desired 
computing interval size in Block 4. Based on the nature sf 
the Virtual Mass phantom trajectory relative to the spacecraft 
path, it was decided in the computer mechanizations reported in 
Ref. 3 to try and hold essentially equal increments in true 
anomaly relative to the Virtual Mass. This would have the effect 
of automatically reducing the time interval whenever the space- 
craft flies close to a celestial body (and hence close to the 
Virtual Mass) and increasing the time increment when displaced 
far from all bodies. If the desired true anomaly increment is 
denoted 6 8 ,  the time increment corresponding to 6 8  can be found 
as (to first order) 
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Here H is twice the instantaneous areal rate relative to the 
Virtual Mass and is the magnitude of the vector defined by 
Eqn. (3a). As noted in Ref. 3, special instances can occur 
where the spacecraft motion is momentarily directed precisely 
toward or away from the Virtual Mass. In such cases, of course, 
H - 0 and Eqn. (66) is singular. In order to avoid this diffi- 

culty, H can be replaced by r 
vro 'vr o 

where Vvr - - 
0 

This is tantamount to assuming that F is orthogonal to qr - 
vro 0 

In reality this condition is realized only for an apsidal cros- 
sing; hence, the modified form 

can be considered to give time increments corresponding to a 
specified increment 60 in "apsidal anomaly". The possibility 
that Vvr a 0 is quite remote and, of course, when Vvr is small 

0 0 

we desire large computation time intervals. The earlier pro- 
grams of Ref. 3 used Eqn. (67), holding 6 0  constant at an input 
value. The present program, as we shall see later, does provide 
some intelligence for modifying 6 0  as necessary during a tra- 
jectory computation. For now, however, simply assume that 
Eqn. (67) is used to compute a 6t corresponding to some specified 
6 0 .  Block 4 compares this increment with the MAIN program esti- 
mate of the time to the next event and sets the desired 6t to 
the smaller of the two. 

Block 5 solves the Kepler problem for the given ini- 
tial conditions on the known orbit to find the reference conic 
end conditions. Depending upon the setting of the flag, L@@P, 
the end conditions are determined either to approximate the 
desired time interval on the basis of the first guess, sr else 
to iterate to precise satisfaction of the desired increment, 
Thus, when there is no need to iterate exactly to a prespecified 
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event, the computation is free-running in order to conserve 
computing time. The time increment calculation is accurate 
for the final state determined, but does not correspond exactly 
to the predeternlined time interval except at an event." 

The conic section time increment computed in Block  5 
is used in  lock 6  to update the ephemeris time. In Block 7 a 
magnetic tape is searched to retrieve stored data giving the 
states of the gravitating mass points at the updated final 
ephemeris time. Since these data are stored at time intervals 
which do not in general correspond with the computed time in- 
crements, an interpolation is required to obtain data at the 
desired times. 

Final preparations are made in Block 8 to enter the 
iteration loop of the computation. As a simple first estimate, 
the final spacecraft state relative to the Virtual Mass is 
set to the reference conic final state: 

and KO and are computed by Eqns. (65a, b )  . 
Block 9 begins the iterative estimation of the final 

spacecraft inertial state. Equations (65c, d) are used to 

compute X and X, and Eqns. ( 6 4 )  give the estimate of the final 
state. The iteration loop monitor in Block 10 transfers to 
 lock 11 a fixed number of times for successive improvement sf 
the final state estimate. This is accomplished in Block E E  
by evaluating Eqns. ( 2 6 )  and ( 2 7 )  for the Virtual Mass final 
state corresponding to the latest update (from Block 99 of the 
spacecraft final state and the gravitating point mass inertial 
states from Block 7. The loop is closed by returning to Block 9 

to update and is. Numerical experiments have shown that con-- 
vergence is very rapid to mutually compatible sets of values of 
spacecraft and Virtual Mass final states. Thus, the monitor in 

*The precision of calculation of the final positions and 
times will be dealt with later. 



Block 10 is programmed to iterate twice, then switch to the 
precision test in Block 12. Here the last two successive esti- 

mates of Fs are compared. If they agree to within a specified 

tolerance (to be discussed shortly), the cycle is considere2 to 
be completed and the program returns to the MAIN program, If 
60, and hence bt, happens to be very small for the specified 
tolerance, successive position estimates will agree much better 
than required. In this case Block 13 will be entered, where 
the desired apsidal anomaly 60 will be increased by a factor 1-1 
for subsequent steps. On the other hand, if 60 is too large, 
the precision tolerance will not be satisfied in Block 12, In 
this case 60 will be compared in Block 14 with a minimum allow- 
able step size. If it exceeds this minimum, 60 is reduced in 
Block 15 by a factor 0.8 and the interval is recomputed, 
starting again at Block 4. If 60 has already been reduced to 
the minimum allowable size, the program simply returns to M A I N  
since it cannot meet the precision tolerance within the limits 
of the minimum allowable step size. 

This section will be concluded with a discussion of 
the relationship of the precision of calculation of the refer- 
ence conic to the precision of position computation. The form 
of Eqns. (58) shows clearly the dependence of the final solution 
- 
rs upon the reference conic rvr and the combined correction c. 
In the procedure just described, the reference conic con.tribution 
remains fixed, whereas the correction term is iteratively im- 

proved. Even rc itself is composed of a fixed part and a - 
variable %which is really the iterated quantity. The computa- 
tional precision test referred to in Block 12 of Fig. 6 is 

where P is the required relative precision. Note that the divi- 
sion by r has the effect of building a variability into1 the vr 
absolute precision. As the spacecraft comes very near a celes- 
tial body and hence to the Virtual Mass, a very tight tolerance 
is held in the position calculation. Conversely, as the space- 
craft moves far away, the absolute tolerance on position is 
relaxed, 



- 
Since rvr is computed from closed analytical forms 

for conic sections, one may conclude that the precision of 
this contribution depends solely upon the mechanics of perform- 
ing these fixed operations with a given number of digits, 
However, the time associated with the transfer along the conic  

arc from F to qr is computed using a recursion formula for 
vro an infinite series expansion for the time of flight (see Ref, 7 ) -  

The truncation of this series is controlled by a time tolerance 
parameter Ttol. If Ttol is large, the series will be truncated 

early and the time increment 6t will be in error from the correct 

value associated with q, and Tvr. However, since time is the 
0 

independent variable, the 6t is taken as correct and this means 

that the Zvr must be interpreted as being incorrect for this St. 

It is clear from the foregoing discussion that there 
is an intimate interdependence of Ttol and P. If P reflects t h e  

precision desired for the calculation of <, then Ttol must be 
compatible with it. 

It is assumed that the sum of the neglected terms in 
the time series is less than the last one computed. The last 
term computed is smaller than Ttol since that is the truncation 

criterion. Thus, the absolute error in the reference conic 
position is bounded by 

Converting Eqn. (69) to an expression for the bound on the 
absolute error of the correction contribution gives 

Suppose we require that the time error bound be some arbitrary 
factor times the position error bound: 



Then, substituting Eqns. (70) and (71) into Eqn. (72) and salving 
for Ttol gives 

From a practical standpoint Eqn. (73) is computed at the beginning 
of the interval, using initial rather than final values. Nurneri- 
cal tests have shown that optimal performance is achieved with 

Since Eqn. (73) is evaluated at the beginning of the 
interval, a comparison of Eqns. (67) and (73) reveals that the 
desired time increment can be expressed simply as 

The factor B lumps together the constants 6 8 ,  F and P, It is 
this factor that is increased in Block 13 or decreased in 
Block 15 according to the computational precision test r e s u l t s ,  

The only parameter which must be changed to vary the 
speed and accuracy of the computation is the precision control 
I?. The smaller this number, the smaller the tolerances and 
the computation step sizes; the larger it is, the looser the 
tolerances and the faster the trajectory is computed. The 
next section will show numerical results demonstrating the 
performance capabilities. 

3.3 Numerical Experiments with the Fifth Order MAJ Procedure 

The best method for checking the accuracy of a numeri- 
cal integration procedure is to compare it with a solution which 
is known in closed analytical form. The two body conic section 
is a known closed analytical solution, but it does not constitute 
a good check for the Virtual Mass technique, since in this case 
the Virtual Mass coincides exactly with the only gravitating 
mass point. Thus, the reference conic is the complete solution 

since the correction solution rc E 0. The next best altern-tive 



is to compute a solution to a problem which has some character- 
istic such as a known integral (not the complete integral), 
Fortunately, the restricted three-body problem provides such 
an alternative. 

The Jacobi energy 

is a known integral of the restricted three-body problem, Here 
w is the constant angular rate of the Earth-Moon line, and the 
spacecraft position and velocity components are given in a 
barycentric inertial coordinate system. The constancy sf Eqn, 
(75) is a necessary (but not sufficient) condition which must 
be satisfied by any solution to the problem. Thus, the varia- 
tion of C along such a trajectory is an index to the accuracy 

j 
of the numerical procedure. 

A typical free-return Earth-to-Moon transfer trajec- 
tory was used in Ref. 3 to test the accuracies of various 
mechanizations of the Virtual Mass technique in terms of the 
Jacobi energy. This same trajectory has been computed using 
the fifth order MAJ technique described here. The Earth-Moon 
system parameters and the trajectory initial conditions and 
gross characteristics are summarized in the following t a b l e ,  
The inertial coordinate system is centered at the baryeenter 
and the XY plane coincides with the Earth-Moon orbital p lane ,  
The positive Z axis is defined by the right-hand convention 
with respect to the Moon's orbital motion. A computer-generated 
plot of the trajectory is depicted in Fig. 7. The Z-component 
line element was swept along the trace in the XY plane to show 
the outbound half of the twisted three-dimensional figure-of- 
eight trajectory. The paths of the Moon and the Virtual Mass 
in the plane are also shown. 

The performance of the Virtual Mass integrator in 
computing this trajectory in double precision is presented 
graphically in Figs. 8, 9, and 10. Normalized ~acobi energy 
variation, number of computation steps and position deviation 
are shown versus trajectory times for a wide range of values 
of the precision tolerance P. The normalization of the enerriy 



PARAMETER OR VARIABLE NUMERICAL VALUE 

Earth-Moon distance (n. mi. ) 207747.2  

I Angular rate of Earth-Moon line (deg/hr) 0.54901493 

I Ratio of Moon mass to Earth-Moon mass I 0.812143289 

Time (hr) before start of trajectory that 
Moon crossed x-axis 

1 Spacecraft initial position X I - 1126e088 
(n. mi.) Y 

I Spacecraft initial velocity X 

(n. mi./hr) 

Initial trajectory inclination relative 
to Moon orbital plane 

Approximate time of insertion-to- 
pericynthion (hr) 70.3389% 

Approximate pericynthion altitude 
(n. mi.) 

Table 1. Typical Earth-Moon System Parameters and Trajectory 
Initial Conditions 
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FIGURE 7 - RESTRICTED THREE BODY EARTH-TO-MOON TRAJECTORY 



TRAJECTORY TIME (HOURS) 

FIGURE 8 - DIMENSIONLESS JACOB1 ENERGY  ARIAT TI ON ALONG EXAMPLE EARTH-MOON 
TRAJECTORY 





COMPUTATION PRECISION TOLERANCE " P 

FIGURE 10 -MAGNITUDE OF POSlTlON DEVIATION A T  FIXED FINAL TIME FOR EXAMPLE 
EARTI-I-MOON TRAJECTORY (REFERENCE IS P = I ~ - ~ ~ C A S E )  



variation in Fig. 8 is with respect to the initial Jacobi 
energy Jo : 

As expected, the energy variation decreases as the 
precision tolerance is decreased; however, due to other factors, 
there appears to be little or no benefit in using a precision 

tolerance smaller than P = The price of higher accuracy 
is longer running time. Figure 9 shows that the high precision 
run was computed in a total of 3540 steps. The comparison of 
Figs. 8 and 9 is of particular interest. A high slope of the 
number of steps versus time indicates short computing time 
intervals and a small slope indicates longer intervals, Gener- 
ally the steep slope regions of this curve correspond with the 
regions where the Jacobi energy variation is the greatest, 
Hence, one would conclude that the step size control, while 
perhaps not optimal, is at least behaving qualitatively in the 
right direction. The accuracy limitation indicated probably 
is inherent in the fifth order mechanization used. 

At the other end of the spectrum lies the approximate 

solution corresponding to P = This trajectory was computed 
in only 27 steps and showed an energy variation of .0034, 
Figure 10 shows the positional deviation of the looser toleranee 

- 

trajectories from the P = lom2' solution. At 70.33875 hours 
- 

the P = trajectory deviation is 173.6 nautical miles. 
Note how rapidly the other trajectories converge to the accurate 
solution with increasingly tight tolerance specification, 
Clearly, for all practical purposes, lunar trajectories can be 

computed with precision tolerances of P = 10 -I5 or looser, 1n 
fact, single precision calculation would be adequate for such 
trajectories. The purpose here, however, is to develop a higher 
precision program suitable for efficiently computing in.terpPane- 
tary spacecraft trajectories or planetary ephemerides. Numerical 
results for this type of application will be discussed next, 

The 221 day Earth-to-Mars trajectory shown in Fig, 4 
was computed by the Virtual Mass technique and compared with 
the same trajectory computed using the JPL Double Precision 
Trajectory (DPTRAJ) Program (Ref. 6 ) -  The flags were set 



appropriately in the various options of DPTRAJ so that there 
was no planetary oblateness, no solar radiation pressure and 
no relativistic effect. Both programs used the same planetary 
ephemeris, DE19, the same planetary masses, and the same scaling 
of the solar system in kilometers. Thus, every effort was made 
to ensure that both programs were solving identical mathematical 
problems on the same computer (UNIVAC 1108 under an Exec 8 
system). Only the methods of numerical integration differed, 

Figure 11 summarizes the results of a series of runs 
with the Virtual Mass program. The magnitude of the position 
difference from the JPL-computed value at a fixed final time 
(corresponding to closest approach to Mars) is plotted versus 
the number of computing steps. Points along this curve are 
parameterized by different values of the precision tolerance 
P, as shown for a few cases. The agreement with DPTRAJ is 

-18 quite good ( 2  609 m) for the high accuracy case with P = 10 - 
This computation was performed with 979 steps and required 
approximately 35 seconds of central processor unit (CPU) time, 

-9 The looser-tolerance case for P = 10 looks especially inter- 
esting. Note that the trajectory was computed in only 7 0  steps 
and shows an error from the JPL position of slightly more than 
2600 km. Thus the Virtual Mass procedure is capable of computing 
a good approximation very rapidly and can then be tightened down 
to produce a high precision solution in a still respectable time, 

4.0 ASPHERICAL GRAVITATIONAL POTENTIALS 

The question of the representation of non-spherical 
gravitational potentials of individual celestial bodies will 
now be considered. Two approaches are possible within the 
framework of the MAJ implementation described in the preeeeding 
chapter. 

(1) Expansion of the potential in spherical harmonies, 

(2) Representation of the gravitational field as the 
superpositioning of the fields of a.collection of 
many discreet mass points. 

4.1 Spherical ~armonics 

The gravitational potential function of a celestial 
body has traditionally been represented by a series expansion 
in spherical harmonics. A general form of such expansions can 
be written as (Ref. 8) 



FIGURE 11 - DEVIATION OF FINAL POSITION FROM JPL-COMPUTED VALUE, FOR A 221 
DAY EARTH-MARS TRAJECTORY, AS A FUNCTION OF NUMBER OF 
COMPUTATION STEPS 



where 

r = mean equatorial radius of planet e 

4 = satellite latitude (positive north) 

h = satellite longitude (positive east) 

'nm' 'nm = numerical coefficients (Cno = -Jn = Cn and S,, = 0) 

m Pn(x) = associated Legendre polynomial 

Pn (x) = Legendre polynomial 

+ n(n-1) (n-2) (n-3) (x) "- - ...j 2.4. (2n-1) (2n-3) 

The gradient of this potential is the gravitational acceleration 
of the spacecraft by the nearby celestial body: 



The first term on the right obviously comes from the first term 

on the right side of Eqn. (76). The remaining terms As derive 
from the double summation of terms in Eqn. (76) and will not be 
written out since they are algebraically quite complex, Note 
that the first term is the familiar single mass point contribu- 
tion and represents the field attraction which would result if 
all the planetary mass were concentrated at the center. It can 
be included in the Virtual Mass computation in the usual fashion, 

The remaining AZ terms, however, define the departure from 
sphericity and must be included in the catchall term a, 

Recalling (see Eqns. (65)) that the MAJ technique 

requires a knowledge of a as well as a, evaluated at the computing 
interval end points, we see that two courses of action are possi- 

ble. The first would compute Aa explicitly as 

Here the scalar operator is defined as 

in rectangular coordinates. In Eqn. (78) the total time rake of 

change of AS is implied as seen by the inertially moving space- 
craft. Thus the first term represents the change produced by 
the relative translation of the spacecraft through a rotationally 
static field. The second term takes account of the change seen 
by a spacecraft with no relative motion in a field moving rota- 

tionally with the planet. The algebraic expression for AS 

will be even more complex than that for AS, hence it also will 
not be written out explicitly. 

The second alternative for determining As involves a 
numerical procedure which requires the explicit form for AZ 
only. This is described in detail in the Appendix for the term - 
a in general. 



In principle, an arbitrary potential field can be 
represented rigorously by the infinite series of spherical 
harmonic terms. In actual practice, of course, the series 
must be truncated to a finite number of terms. This truncation 
produces only small errors in the representation of gravita- 
tional anomalies which are periodic in character. The reason 
for this, of course, is the periodic nature of the trigono- 
metric terms in the series. This very characteristic of the 
series, however, makes it difficult to account accurately fo r  
randomly distributed local anomalies. There is evidence of 
the existence of discontinuous concentrations of matter within 
small volumes just under the surface of the Moon (Ref. 9)- 
In fact, one would expect such mass discontinuities to exist 
in virtually all planetary bodies due to meteoritic impacts 
and/or lava or heavy ore deposits in the crusts. 

Some alleviation of this practical difficulty is 
afforded by selective processing of short and long data arcs 
for satellites with a variety of orbital characteristics, 
However, the disagreement (by orders of magnitude) between 
different investigators in the higher order terms of the 
Earth" potential indicates the need for improvement in the 
theoretical approach to the problem. 

4.2 Discreet Mass Points 

The idea of representing a large celestial body by 
a collection of mass points which are fixed relative to each 
other is not new. In fact, the concept of microscopic subdivi- 
sion of the matter in a body down to the molecular level is 
philosophically rather old. Essentially such a fine subdivision 
amounts to a representation by infinitely many particles; hence, 
the mathematical invention of the continuum was introduced, 
This led rather directly to the early adoption of the spherical 
harmonic approach. 

Here we return to this discreet mass point representa- 
tion and ask whether one can (by analogy with the truncation of 
the spherical harmonic series) model the potential by means sf 
a comparatively small finite number of mass points. This sub- 
ject has received surprisingly little attention from a theo- 
retical point of view. The reader is referred to Ref. TO for 
a treatment of some of the basic considerations. 

There is a fundamental difference between the spheri- 
cal harmonic and point mass approaches. In general, a finite 



number of mass points requires an infinite harmonic series for 
equivalent representation and vice versa. In Ref. 10, for 
example, the oblate potential of the 3 mass point configuration 
of Fig. 12 was compared with that for a homogeneous spheroid 
as given in terms of an infinite spherical harmonic expansion, 
The comparison was done on the basis of the value of the inte- 
gral, over all space outside the body, of the square of the 
difference between the two potentials. The condition far the 
minimum of this integral gives a functional relationship of 
mn and h, where the total mass m = m + 2mn is held constanr. 

P 
Although the simple 3 mass point configuration cannot be made 
to match the given infinite series potential exactly, it can be 
shown that the minimized integral function vanishes as h +- 0, 
m +-p. and m ++a for the simple J2 truncated model of an oblate n P 
field. To gHin some feeling for the numbers which may be used 
in a practical case, the minimizing criterion gives (for h = 10 
miles, re = 4000 miles, J2 = .0011) mn = -88me and m = 177me, 

P 
where me is the total mass of the Earth. 

This indicates that 
the gross departures from 
sphericity (e.g., polar flat- 
tening or triaxiality) are 
representable by large posi- 
tive and negative mass points SPlN AXUS OF 
(multipoles) located close SYMMETRY 
to the center of the celestial 
body. The comparatively small 
and highly localized crustal 
effects would then be repre- 
sented by small mass points 
located a small distance 
beneath the planetary surface. 
Large or small, positive or 
negative, close-in or far-out, 
the important consideration FIGURE 12 -GEOMETRY OF 3 MASS 
is that all of these mass points POINT OBLATE BODY 
can be included in the Virtual 
Mass computation procedure in 
exactly the same way as all 
other mass points. Therefore, 
the point mass approach does not suffer from increasingly complex 
algebra with addition of more and more terms as does the spheri- 
cal harmonic approach. It simply means many more masses to be 
processed in the same way. This has an obvious advantage in 
electronic digital computation. Even this inconvenience can 
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be minimized, analogous to the practice of turning off spherical 
harmonic expansions when sufficiently far displaced from irregu- 
lar celestial bodies. Equation (38) gives the criterion by 
which one can pfecompute the distance from the center of mass 
of a celestial body beyond which the computational precision 
allows the aspherical mass points to be coalesced into a single 
point at the center of mass. The method of applying the two- 
mass-point criterion to a large assemblage of points for a given 
body will be shown in an illustrative example. 

First suppose we choose a desired precision of 

For spacecraft distances of 1 AU = 93 x lo6 miles and 1 lunar 
distance = 240,000 miles, this precision corresponds to dis- 
tances of .279 miles and 3.8 ft. respectively. Two different 
kinds of mass point pairs out of an aggregate used to represent 
the Earth are considered. 

One kind consists of a large central mass point me, 

which is essentially the total Earth mass, located very close 
to the center of mass, and a small peripheral mass point 

6 x lom6 me, representing a heavy concentration near the snr- 

face. Take the separation distance as the Earth's radius 

r12 = r = 4000 miles, Substituting these data into the first e 
form of Eqn. (38) gives: 

(4000) = 310,000 miles .cs = $; 10-9 

-6 Thus, a mass concentration near the surface of 6 x 10 of the 
total Earth mass can influence position computations by about 
4 ft. at a distance of 310,900 miles. 

The second kind of mass point pair consists of the 
two negative masses of the three point configuration in 
Fig. 12. Using the h = 10 mile value assumed in the ea.r l ier  



example, and using the second computational form of Eq:n, (38): 

r = v3 (loo) = 316,000 miles . 
CS 3 

The data were deliberately chosen so that these two cutoff dis- 
tances are nearly the same. It illustrates the point that a 
surface concentration must be unrealistically large to be as 
influential as the gross oblateness effect at large distances, 

5. SUMMARY AND CONCLUSIONS 

The fifth order matched acceleration and jerk imple- 
mentation of the Virtual Mass concept is a simple, self-starting, 
fast and highly accurate method of numerically integrating a 
spacecraft trajectory. This procedure represents an improve- 
ment of several orders of magnitude over previous methods using 
the Virtual Mass. It appears to be at least competitive with, 
and possibly superior to, more conventional n-body integration 
methods. 

This procedure can easily handle aspherical gravita- 
tional effects of individual celestial bodies and non- 
gravitational accelerations of the spacecraft such as rocket 
thrust, solar radiation pressure and aerodynamic forces, 

Further improvenents in this implementation of the 
Virtual Mass technique should include the development of con- 
patible orbit determination programs. This would include 
development of equations for the state transition matrix using 
the Virtual Mass formulation. The intent would be to provide 
the capability to determine (a) spacecraft orbits from tracking 
data, (b) solar system ephemerides from astronomical observa- 
tions, and (c) aspherical gravitational potentials (preferably 
in the form of mass points) of individual planetary bodies 
from satellite tracking data. 

Other desirable objectives would be to determine a 
method of including relativistic effects and to extend the 
procedure described here to permit a simultaneous integration 
of all N bodies considered to obtain their respective orbits 
for a set of prescribed initial conditions. 

D. H. Novak 

Attachment 
Appendix 
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APPENDIX 

The discussion in Section 3.1 assumed that the aceelera- 

tion term a (including everything but the point mass gravrEtatiesna1 

terms) and its derivative a were known. In some instances contri- 

butions to 5 such as solar radiation pressure terms or spherical 
harmonic gravitational anomalies (see Chapter 4) may be given in 
explicit analytical forms. If these forms are not too complicated, 

the derivative a can be written out and both expressions evaluated 
from the analytic forms. In many cases, however, the phenomena 
may be so involved as to defy reasonable analytical representation, 
A good example is the hypersonic aerodynamic force on a com~lex- 
shaped vehicle. The usual engineering practice is to tabulate 
the force (acceleration) as an empirically or experimentally de- 
termined function of its significant variables. It may a l s ~  

happen that the analytic form for a, even though known, may be 
so complicated that it is impractical to differentiate in closed 
analytic form. 

Consequently, a method may be needed to estimate a 
from computed or tabulated values of a. The simplest and most 

straightforward approach is to represent s in a Taylor's series 
expansion, determine the coefficients from an appropriate numer 

of evaluations of -6: within the computing interval and then corn- 
pute s from the derived series. Details are presented for two 

cases: (1) where a is independent of the spacecraft state, and 
- 

(2) where a is dependent on the state. 
- 

In terms of a truncated Taylor's series, a and its 
first time derivative are 
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- - 
Since a. = c is known, there are n coeff~icients C1,.*-. c to o n 
be determined. If 5 is evaluated at n points (not including 
the beginning point a. of the interval), a sufficient number of 

equations can be obtained to invert for the unknown coefficients. 
Denote a sequence of n non-zero different proper fractions 
ending with unity by f.(j=l, ...., n), fn = 1. Use these to desig-  

3 
nate a sequence of ti& points across the computing interval as 

bt = f. 6t. The corresponding values of 5 are denoted a . In 
j J j 

this notation, the system of equations representing n different 
evaluations of Eqn. (A-la) is written as 

where the matrix is 



The inversion to solve for the coefficients is written formally 
as : 

(A- 4 11 

It is at this point that a distinction is made between the 
state-dependent and state-independent cases. 

If a depends only upon time and is independent of 
the spacecraft state, the fractional subdivisions f of the 

j 
interval can be predetermined at convenient fixed values, 

This means that the matrix F-I could be pre-computed and prea- 
programmed to solve Eqn. (A-4) directly for the coefficients 
- - 
c for appropriate values of go, ..., a 
j no 

For example, if n 

1 - 2 is chosen as 3 and fl = 7,  f2 - - 3, f3 = 1, 

and 
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These cases of state-independence permit the complete deter- 

mination of ; and ; at the beginning of the computing interval, 
The terms involving a and a can be eliminated from Eqns, ( 6 % ~ ~  d) 

for f and R and can be included in Eqns. (65a, b) for and zo. 
When a does depend upon the spacecraft state, the 

determination of the coefficients < becomes considerably mre 
2 

complicated. Evaluation of the spacecraft state at points 
interior to the computing interval has not been provided in the 
fifth order MAJ procedure described in Chapter 3. It c ~ l u l d  be 
done, however, with some obvious modifications of the flow dia- 
gram described there and shown in Fig. 6. These changes would 

also be necessary (regardless of how a is given) if the MAS 
procedure were to be extended beyond the fifth order. 

Basically, a capability must be provided for multiple 
evaluations of Blocks 5 through 9 and Block 11. The desired 
computing interval, determined in Block 4, must be subdivided 
into the specified number of parts. This is most easily done 

by initially setting f = i. The desired 6t determined in 
j n j 

this manner would be matched only approximately in the free- 
running mode described in Section 3.2 for the reference conic  
evaluations in Block 5. The only exception would be that fn = 1, 

or bt, would be iterated exactly at an event. The time incre- 
ments 6ti actually achieved in Block 5 would then be used in 

J 

Block 6 to obtain the required sequence of n updated ephemeris 
times. The ephemeris tape search and data interpolation would 
be conducted in Block 7 as necessary to obtain the states of 
the gravitating mass points at the n time points. 

The preparations made in Block 8 to enter the itera- 
tion cycle must be expanded to provide for multiple evaluation 
(once at each of the n points) of Eqns. (68) and (65a, b), Note 

- - - - 
r r that in these equations the quantities rvs, rvs, vrf v r f  X o t  - 

Xo and bt would all be further subscripted with the letter j, 
Note also that the terms involving go would be eliminated from 
Eqns. (65a, b) for Eo and Yo and moved to Eqns. (65c, d) for 

i i 
- - 
X. and fl This is because = cl is not fixed a priori but 
7 j. 

must be iterated. 



Two additional functions rmst be performed in ELock 8, 

The first is the estimation of values of ai. The value of a 
-I 

at the end of the preceding interval is indexed to be the ini- 
tial value for the new: 

- 
The remaining coefficients cl, ..., c would be left at their n 
previous values as a first guess for the iteration procedure, 
For the starting step of a trajectory, these coefficients would 
be initialized to zero. Finally, Eqn. (A-la) can be used re- 
peatedly to compute the first estimates of a 

j *  

The second additional function is the computation of - 

the matrix F-I. The f. # 1 since the free-running mode in 
i n 

Block 5 does not iterate the 6t accurately to the desired 
j 

values. Therefore Block 8 would compute the actual fractions 
as 

This would permit the evaluation of Eqn. (A-3) for F, Finally 
-1 a standard inversion procedure would yield F . 

Equations (64) and (65c, d) are computed in Block 9 
for each of the n time points to obtain the corresponding 
estimates of the spacecraft state. Before this can be done, 

however, Eqns. (A-lb) must be computed to evaluate a 
j ie 

The 

initial value go is simply cl. 
Block 11 is where the equation or tabulated values 

for a are required in order to determine the a corresponding 
j 

to the latest spacecraft state estimates i? and rs . Equation; 
Si i 

J J 

(A-4) can then be used to update the coefficients <. These 
J 

data, together with the Virtual Mass parameters, permit the 
iteration loop to be closed by returning to Block 9. The itera- 
tion logic and computational precision control are the same as 
previously described in Section 3.2. 



Clearly the evaluation of the spacecraft state at 
interior points greatly increases the amount of computation 
per interval. The allowable step size for a prescribed aeeu- 
racy, therefore, would have to be more than proportionately 
larger for this approach to pay off. One should also bear in 

mind that when the a values are experimentally determi~ped, the 
accuracy is characteristically not very high. Accordingly, 
there is some justification for using an integration procedure 
whose accuracy is commensurate with the data. This may suggest 
using n = 1 -- that is, reducing Eqn. (A-1) to 

and determining cl from the end-values only. This, of course, 

reduces to the simple modified Euler integrator for the non- 

point-mass acceleration terms a, but this may be entirely 
appropriate to the situation. 




